Biorthonormal Systems in Freud-type Weighted Spaces with Infinitely Many Zeros - An Interpolation Problem
نویسنده
چکیده
In a Freud-type weighted (w) space, introducing another weight (v) with infinitely many roots, we give a complete and minimal system with respect to vw, by deleting infinitely many elements from the original orthonormal system with respect to w. The construction of the conjugate system implies an interpolation problem at infinitely many nodes. Besides the existence, we give some convergence properties of the solution.
منابع مشابه
A Lagrange-type projector on the real line
We introduce an interpolation process based on some of the zeros of the mth generalized Freud polynomial. Convergence results and error estimates are given. In particular we show that, in some important function spaces, the interpolating polynomial behaves like the best approximation. Moreover the stability and the convergence of some quadrature rules are proved.
متن کاملConvergence of Hermite and Hermite-Fejér Interpolation of Higher Order for Freud Weights
We investigate weighted Lp(0 < p <.) convergence of Hermite and Hermite– Fejér interpolation polynomials of higher order at the zeros of Freud orthogonal polynomials on the real line. Our results cover as special cases Lagrange, Hermite– Fejér and Krylov–Stayermann interpolation polynomials. © 2001 Academic Press
متن کاملStable controllers for robust stabilization of systems with infinitely many unstable poles
This paper studies the problem of robust stabilization by a stable controller for a linear time-invariant single-input single-output infinite dimensional system. We consider a class of plants having finitely many simple unstable zeros but possibly infinitely many unstable poles. First we show that the problem can be reduced to an interpolation-minimization by a unit element. Next, by the modifi...
متن کاملOn an Interpolation Process of Lagrange–hermite Type
Abstract. We consider a Lagrange–Hermite polynomial, interpolating a function at the Jacobi zeros and, with its first (r−1) derivatives, at the points ±1. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator in certain suitable weighted L-spaces, 1 < p < ∞, proving a Marcinkiewicz inequality involving the derivative of the polynomial at ...
متن کاملTitle Stable H ∞ Controller Design for Infinite - Dimensional Systemsvia Interpolation
H∞ control is well appreciated as a powerful design methodology against system uncertainty. It has been playing an important role in the field of robust control. For infinite-dimensional systems such as time-delay systems, H∞ control problems have been under extensive study since the mid-1980s. On the other hand, stable controller design known as strong stabilization is also an important issue ...
متن کامل